The Unexpected Perspective
The Implications of Darwin and the Big Bang for Christians ... and Everyone Else

Perspectives

Lots of people are upset that President Trump is gutting the Clean Power Plan. Here are some practical responses to this.

            For many people, particularly environmental activists, the sky did really fall when US President Donald Trump took steps to gut the Clean Power Plan, the cornerstone environmental action of the Obama Administration.  On its face, the action looks like a body slam to steps taken to limit coal use in electric generation.  So if, like me, you're concerned about greenhouse gas emissions and global warming, what is the right response?

            The first thing I say is, time to stop whining about it.  The sky is not falling because of the Trump Administration's decision.  Instead, read on for some practical things that can be done.       

            Does Federal policy on climate really make that much difference?  I'm not so sure; and if it doesn't make that much difference, we should focus our attention on the things that really do make a difference.

            President Trump took his action to help save coal.  Scientific American reported that coal use was down 9% in 2016, the third year in a row that overall coal use has declined.  A good example of this trend is Duke Energy, a major electric utility in the Southeast.  Duke hs gone from 70% of electricity generated by coal in 2008 to 42% today.   So let's first ask, why is coal consumption going down?

             It's been declining for three key reasons: 1) Americans haven't been using as much electricity as before; 2) natural gas has become more competitive; and 3) alternative energy such as wind and solar have also become more cost competitive. While each of these factors is different, they share something in common: they're all about economics and have virtually nothing to do with Federal government policy.   

            So will Trump's new policy – gutting the Clean Power Plan – make a meaningful difference?  Many experts say that the trend away from coal is going to continue, even though President Trump effectively gutted the Clean Power Plan.

            So just why do I think Trump's decision will make a significant difference?  One part of the argument has to do with the plans of electric utilities themselves.  26 of the 50 US states sued to stop the Clean Power Plan from being implemented.  Presumably, these were the states controlled by Republican opponents of the Clean Power Plan, and skeptics of global warming.  Reuters did a survey of the 32 electric utilities that operate in those 26 states.  Here's what they told Reuters:

  • 20 said the Trump order will have no impact on their plans to reduce coal usage
  • 5 said they're reviewing the implications of the order
  • 6 provided no response
  • Only 1 of the 20 said it would prolong the life of coal facilities.

Even if the other 11 who were non-committal end up responding in a way favorable to Trump, nearly two thirds said they wouldn't. 

            I think one can make the argument that the Trump action against the Clean Power Plan is more sound and fury that signifies nothing. 

            But what if I'm wrong?  I readily admit, I could be completely wrong.  So assuming I'm wrong about the impact of Trump's action on coal usage, let me suggest five practical things that can be done to continue, even speed up, the demise of coal. Some of these may be a bit unexpected, but that's a key objective of this blog: provide unexpected perspectives on issues.  Here's what I think can be done:

#1: Promote Use of Fracking

            Promoting fracking may turn a number of environmental activists off.  I appreciate that, and I agree that fracking has environmental consequences, but promoting this in the short term makes great sense if your objective is to reduce greenhouse gases.  If you think fracking stinks, please hold your nose for a just a moment while I explain my thinking.        

            Let's go back to the two key reasons why coal is a dying industry: 1) improving economics for wind and solar; and 2) natural gas is more cost competitive.  The reason natural gas has become so cost competitive is because of the dramatic increase in supply in the USA.  That's due to one thing – fracking technology.  Admittedly, wind and solar are definitely more environmentally friendly that natural gas, but wind and solar cannot possibly replace coal the way that natural gas can, at least in the short term.  So for the short and near term, natural gas is a great alternative to coal.  Coal plants can be converted to natural gas, but you can't turn a coal plant into a solar or wind facility.  While it produces greenhouse gases, too, the greenhouse gas impact of gas is substantially less than coal.

            If you really don't like fracking, the next best alternative in the short term is to  import liquefied natural gas, especially from places like Qatar.  That however, has two huge disadvantages: 1) it worsens the balance of payments; and 2) it increases dependence on energy from the Middle East.  In comparison, promoting domestic fracking is one of the two best strategies for reducing coal usage.  The irony, of course, is that while the Trump Administration is trying to promote coal usage, its simultaneous promotion of the oil and gas industry works against coal.

#2: Promote Usage of Smart Metering by Utilities

            A second way to counteract the Trump action is to encourage electric utilities to expand usage of smart meters.  A smart meter can be remotely managed and can provide minute by minute information about electric usage.  Smart meters provide advantages to customers, utilities, and to the environment.   The advantages to customers include:

  • Far better data about usage
  • Useful data to help the customer adjust habits in a way that will reduce monthly bills
  • Reduce blackouts.

Smart meters are also very advantageous to the electric utility.  They:

  • Eliminate the need to send an army of people out to read meters
  • Provide more timely information about the electric grid
  • Permit the utility to utilize resources more efficiently
  • Permit dynamic pricing (i.e., different prices depending on the time of day)
  • Help avoid the cost of building new plants.

They're also beneficial to the environment because they reduce the need for new plants.

            Unquestionably, smart metering is something that's advantageous to consumers and the utility companies, themselves, and adoption should lead to reduced carbon emissions.  The even better news is that adoption has nothing to do with the Federal government.  The Trump action has zero impact on this.

            If smart metering is something that benefits companies and consumers alike, how do you encourage its adoption?  Get state utility commissions to provide incentives to companies to adopt the technology.  

#3: Get Investors to Pressure Electric Utilities to Switch Fuel Sources

            In the past few years, more and more companies have come under pressure from various advocacy groups, including investors, to change policies.  Climate change is an emerging area in that regard.  Interestingly, the Norwegian Sovereign Wealth Fund has been pressuring American utility companies not to build coal plants.  Why would this make any difference? 

            Norway has benefitted tremendously from drilling for North Sea oil.  Unlike citizens of most other countries with large oil deposits, the Norwegian government wisely established as sovereign wealth fund using royalties from North Sea oil.  The fund now has more than one trillion dollars in assets.  Needless to say, the Norwegian Sovereign Wealth Fund is a force to be reckoned with in investment circles. 

            Those concerned about greenhouse gas emissions will be pleased to learn that the Norwegian fund has been pressuring American electric utilities not to build coal plants.  Other investors and investor groups are doing the same.  If enough investors do this, I'm confident that electric utilities won't be building many coal plants, if any, irrespective of Trump Administration policy.  If your investors and customers pressure you to dump coal, doesn't matter much what the President thinks.

            Are there many investor groups that could put pressure on electric utilities to avoid coal?  I think there may be more than anyone realizes. 

#4: Encourage Foreign Investors, Particularly Canadians, to Keep Buying US Utilities

            Another unexpected approach is to encourage foreign companies, particularly Canadian ones, to purchase American electric utilities.  There are a number of reasons why it's attractive for Canadian companies to buy American electric utility companies.  In 2016 alone, three companies were purchased: Fortis bought ITC, Algonquin Power bought Empire District Electric, and Emera bought TECO.  None of these were particularly large transactions, but I expect that those opposed to greenhouse gases ought to be cheering each one.  The reason they should be happy is because Canadian companies appear concerned about greenhouse gases and don't want to invest in technologies such as coal.  Once again, this is something that will work counter to the Trump policy of encouraging coal consumption.

#5: Get Utility Ratemakers to Provide Higher Rates of Return on Alternatives

            The fifth strategy has the greatest potential to reduce greenhouse gas emissions from electric utilities.  Let me explain the basis for this.  Electric utilities are considered monopolies, and the price of electric service is normally set by state public utility ratemaking commissions.  Such ratemaking is done by the states, as opposed to the Federal government.  The rate that a utility may charge its customers is, generally speaking, governed by the following formula:

            R/kwh = O + (V – D)*r

where R = the electric utility's revenue

            kwh = total kilowatt hours

            O = operating costs of the utility

            V = amount of invested capital in the utility

            D = depreciation on the invested capital

            r  = allowable rate of return

Ratemaking for commercial and industrial customers is a little more complicated, particularly because of "demand" charges, but this simple formula should convey the core of the process.

            The allowable rate of return is determined by the public utility commission of each state.  My idea is to encourage these commissions to provide differential rates of return based upon the type of investment.  The idea is to offer the utility higher rates of return on more desirable forms of investment (e.g., wind and solar) and lower rates of  return on less desirable forms of investment (e.g., coal).  If electric utilities can earn higher rates of return on wind and solar and lower rates of return on coal, more than likely they will invest more in renewables and less in coal plants.  Again, these decisions are made at the state level, not Federal.

          Besides the fact that certain forms of energy are more desirable than others, is there any type of economic justification for this?  I believe the economic rationale for differential rates of return is the hidden costs of greenhouse gases.  Various estimates have been made of the cost of greenhouse gases.  Some have calculated it as $ 37/ton whereas others say it could be as much as $ 220/ton.  Let's assume, for the sake of argument, it's $ 100/ton.  Let's further assume that an electric utility has the choice of building one plant that is renewable and the other which is coal.  The two plants are projected to produce the same amount of electricity, but the coal plant will generate 10,000 tons of greenhouse gases/year.  Based upon the imputed cost of the greenhouse gases, that represents $ 1,000,000 in costs related to the greenhouse gases.  The state could encourage the company to build the renewables plant and split the $ 1.0 million in foregone cost of greenhouse gases, or $ 500,000.  If the cost of the plant is $ 100 million, it could increase the rate of return on $ 100 million by 0.5% (i.e., 500,000/$ 100 million).  The company and its shareholders would make the identical capital investment but would earn just that much more each year.  Likewise, the general public would benefit from the reduction in greenhouse gases. 

Thus, through the ratemaking process, the state could provide incentives to the company to invest in more efficient technologies by adjusting the allowable rate of return on the investment.   Of course, some would object, saying that electric utility rates would go up.  That's true, but I would make the argument that it would be a sign that consumers are paying the real cost of electricity generation.  Up to now, they haven't paid the true cost because the costs of greenhouse gases have been ignored.  Carbon taxes are a "no no", but a proxy for carbon taxes might be acceptable.          Differential rates of return could serve as a proxy for a carbon tax.

None of these ideas ought to be considered a panacea.   Instead, the point is to get everyone who is concerned about greenhouse gases to stop whining about what the Trump Administration has, or hasn't, done about emissions.  In the long term – meaning every four years – the public can express its opinion about what the Administration is doing.  In between, those concerned about things like greenhouse gases can, and should, use each problematic governmental decision as an opportunity to seek out an alternative.            

            Instead of whining about what "should have been", or "could have been", try to reframe the problem and consider it an opportunity to seek an unexpected perspective, and an unexpected answer.

post a comment

To help reduce greenhouse gases, hybrid electric aircraft are being developed; and they may have some unexpected benefits.

            It seems as though it was just yesterday that the idea of electric powered vehicles was a pipe dream, yet today both hybrid electric and fully electric vehicles whiz down ordinary streets in every town.  The same may soon be true for hybrid electric airplanes.  Airplanes? 

            Fully electric airplanes are already a reality, though not many people have ever seen one, much less flown in one.  In the summer of 2016 a plane called the e-Genius set seven new records as it flew over the Alps.  It was built by a team from the University of Stuttgart in Germany and flew non-stop for 300 miles at a speed up to 142 miles per hour.  That doesn't sound particularly impressive, until you also find out that it climbed to 20,000 in under two minutes!  That's notable for most any plane, but this one was all-electric!

            As with automobiles and trucks, battery technology has improved dramatically in the past few minutes, creating the possibility of hybrid and all electric vehicles.  However, it's one thing to use electric power to propel an auto or a truck, and something quite different to power an airplane.  This is because while the critical limiting factor for batteries in an auto or truck is cost, the limiting factor for an airplane is weight. 

            The challenge is to improve what's called the energy density of the battery.  Energy density is the amount of energy/cubic unit of the battery.  An important question to consider is, how many miles can the plane fly per pound of fuel or per pound of battery?  Today, it's estimated that 1000 pounds of jet fuel can take an airplane 14 times as far as 1000 pounds of battery.  The wings and fuselage must lift and propel the same 1000 pounds, be it fuel or energy, so the critical question is, which one can move the plane farther?  Right now, it's a slam dunk for jet fuel.

            Batteries, of course, keep improving.  Reports of the annual improvement vary, but a commonly stated number is 2 to 3 %.  Some quick math says that aircraft won't be able to have viable electric power propulsion systems for another 30 years.

            Despite that math, several companies say they'll have commercial hybrid electric aircraft available in just about 5 years.  If the energy efficiency math is correct, how is that possible?  The answer has to do with an entire "rethink" of the air transportation system.  You see, the expected appearance of hybrid electric aircraft in the next decade could change much more than just the propulsion system on the typical aircraft; and it just might usher in the latest example of what Harvard Business School Professor Clayton Christiansen calls "disruptive innovation".  Let's consider how this could happen.

            The Boeing 737, the workhorse short and mid-range aircraft of the past 40 to 50 years, probably won't have hybrid electric propulsion for another 30 years, maybe longer.  However, if some start up aircraft manufacturers have their way, you'll get your first ride on a hybrid plane in the early 2020's.  No, it won't be a 140 – 190 seat Boeing 737, or a Boeing 777, Airbus 319, or Airbus 380, it will likely be a 12 passenger seat plane.  The manufacturer?  A start up called Zunum Aero, located outside of Seattle. 

            Zunum recently released the following specifications for the plane they hope to begin flight testing as early as 2019:

  • 12 passengers (compared with 130 – 200+ passengers for the 737)
  • Take off distance of 2,200 feet (6,000 – 7,500 feet for the 737)
  • Flight range of 700 miles (3,500 to 3,800 miles for the 737)
  • Cruise speed of 340 mph (520 for the 737)

In terms of straight up comparison, we're talking two completely different birds.  The Zunum hybrid plane sounds like a toy compared to the workhorse 737, so why would anyone be impressed?

            Zunum, and possible "cousins" being built by companies such as Wright Electric, could be highly disruptive because they create the potential for an entirely new aviation market.  According to Clayton Christiansen, the Harvard expert, disruptive innovation tends to occur at the bottom end of the market.  The products can't compete with the incumbents because they're too small and have too limited a feature set.  The main market, and the marketplace leaders, tend to ignore these innovators at the bottom end of the market.  Eventually, however, the new entrants at the bottom end of the market become real competition for the main market.

            So how could hybrid electric aircraft be disruptive?  It's the classic one word answer for disruptive products: cost.  Zunum projects that its 12 passenger hybrid will be able to operate at a cost of $ 260/hour.  For anyone associated with commercial aviation, that's an astounding number.  The commercial sector tends to think in terms of ASM's, an abbreviation for available seat miles.  That's the number of seats on the plane times the number of miles the plane will fly, and those in the industry use ASM as a key metric.  Zunum projects that its ASM will be eight cents!  That's about one tenth the cost of a typical business jet today, meaning that Zunum could reduce the cost of a certain segment of aviation by an order of magnitude.

            So just how might a company disrupt commercial aviation with the hybrid electric engine?  By creating a practical alternative to the "hub and spoke" system that major airlines use.  Most people who fly commercially are familiar with hub and spoke.  Imagine that you're like me, a regular customer of United Airlines.  I live in the Tampa Bay, Florida area and fly to lots of places.  When I get on a United Airlines flight in Tampa, invariably I will fly either to Houston, Washington, Newark, Chicago, Denver, or San Francisco.  Most of the time my final destination isn't one of those six cities, but I won't get to my final destination without connecting through one of those hubs. 

            Pretty much every major airline uses a "hub and spoke" system, so most every airline also flies its passengers through hubs.  They're highly efficient, and permit the average passenger to fly to a large number of destinations at comparatively low cost.  What's not to like?  Plenty!  The big problem with "hub and spoke" is that it makes the trip just that much longer, and increases the potential for delays, lost luggage, and every imaginable form of aggravation.  Instead of one unpleasant plane ride, you get two or three!

            So hybrid electric aircraft, with a dramatically different cost structure, could create lots of new possibilities.  One can see right away two great potential benefits:

  • Commercial flights from lots of additional airports
  • More direct flights rather than connections through a hub, meaning much shorter elapsed time from origin to destination
  • The potential to simplify the process of getting on and off a plane
  • Much lower cost.

Consider that today, only about 2% of airports have commercial flights.   The fact that these new hybrid planes can take off on a 2,200 foot runway means far more airports could have commercial flights.  Use of smaller aircraft, with a much lower breakeven cost, means the possibility of far more "point to point" flights.

            The idea of replacing "hub and spoke" isn't new.  Various entrants to commercial aviation have been trying to do this for years.  One very promising entry was DayJet, a Florida based airline startup in the early 2000's.  Unfortunately, it hasn't worked.  DayJet took off and very soon landed in Chapter 7 bankruptcy liquidation.  But DayJet couldn't benefit from the expected economics of some of these new hybrids. 

            Of course, the new planes are still under development, but here are some possibilities to consider:

  • A trip from San Jose, California to Los Angeles presently takes about 4 hours and 40 minutes when flying, and costs about $ 160. 
  • Zunum expects it can reduce that trip to 2 hours and 15 minutes at a cost of $ 120, a third less.  It isn't that Zunum's plane will be flying faster (it won't), it's that smaller airports can be utilized. 

Rather than fly through big airports like LAX in Los Angeles, why not go out to a small local airport, park your car, then just get on the plane, maybe even without going through TSA?  Sign me up!  That's always been the great appeal of private aviation, just that you had to have at least $ 20 million in your bank account to participate.  Smaller, slower planes such as the one Zunum is promising could provide the tortoise to commercial aviation's hare, to borrow from Aesop, and make this available to everyone else.

            Hybrid aviation should often one other important benefit not yet mentioned.  In fact, this other benefit has been the real driver of the industry: lower carbon emissions.  Aviation is a major contributor to greenhouse gases worldwide, and it's expected to get much worse over the next 30 years with continued aviation expansion.  Hybrid technology, then all electric, could have a major impact on aviation-caused greenhouse gas emissions.

            Please remember, these aircraft are still under development so don't plan on booking a ticket any time soon, unless you happen to be a test pilot.  But they could have a dramatic impact on aviation, not simply because they should produce significant reductions in carbon emissions, but mainly, and unexpectedly, because their dramatically different economics could really change flying.  They could, in the parlance of Clayton Christiansen, be "disruptive innovators".   Not quite, but soon, ready for take off.

 

 

post a comment

A look at a new book that prescribes a better way to take care of our minds, and the implications for all of us

            The USA faces numerous challenges, two of the very biggest being problems with our educational system and with healthcare.  The Organization for Economic Cooperation and Development (OECD) reports that the USA spends more than any other country on primary and secondary education (K-12) per student; and various studies show we spend far more than any other country on healthcare per person.   We somehow aren't spending our money very wisely, as our students perform comparatively poorly on standardized tests that are administered around the world; and despite widely available, fantastic healthcare technology – partly the result of spending more than twice as much per capita as any other country on health care - we rank 43rd in the world in life expectancy, even behind countries such as Cuba.

            Unfortunately, the stock answers for these problems are more spending and more programs: additional requirements for students in K-12, and more spending on healthcare, especially to pick up people who are somehow being left behind.  Given that the standard strategies only seem to be making things worse, not better, is it time to try something really different?  A book I recently read may help point us to a common solution for both of these problems – and so far as I know, very few people have considered its adoption as the key solution.  It proposes a better way for each of us to care for the health of our minds, and all of the attendant benefits of doing that.  It's not a panacea, but it could have a marked impact on both.  I'll explain that further below.

            The solution is aerobic exercise, coupled with other types of exercise.  The evidence underlying this idea is set forth in a new book called Spark: The Revolutionary New Science of Exercise and the Brain, written by Dr. John Ratey, a professor of psychiatry at Harvard Medical School.  Ratey is well known for his research in attention deficit disorder.  One of his previous books is Driven to Distraction, which addresses the problem of attention deficit disorder, including in adults.  Ratey's goal in Spark is to demonstrate the important link between exercise and the brain.   While anecdotal evidence has suggested a link between the two, up to now there hasn't been a great deal of scientific evidence.  Ratey reviews a great of scientific evidence produced in the past few years to build his case.  As he notes early in the book, it's already well known that inactivity is killing our bodies, but he demonstrates that it's also killing our brains.

            So what evidence does Ratey provide?  The first has to do with the importance of aerobic exercise to help improve learning.  He cites the examples of schools in Naperville, IL and Titusville, PA to demonstrate how changing a school's emphasis towards aerobic physical training can have a remarkable positive impact on the performance of children in schools.  While the evidence for Naperville is certainly very positive, one might tend to dismiss it because its in a fairly privileged community.  That's why the evidence from Titusville, PA is so instructive.  Titusville is a depressed community, but it achieved similar outcomes to those in Naperville.  The clear message is that instead of programs like "No Child Left Behind", we probably should have programs such as "No Child Left Aerobically Unfit".

            Ratey also points out the benefits of aerobic exercise for adults, too.  The benefits are not simply to improve health and one's waistline, as everyone already knows.   Ratey cites evidence that aerobic exercise is beneficial to adult learning.  One of the simple but great takeaways from the book is that one should do aerobic exercise before tackling any important mental tasks.  The aerobic exercise helps prime the brain to be its best.

            Aerobic exercise is certainly known to benefit cardiovascular health, but what's the role with the brain?  Fundamentally, according to Ratey, it's an issue of balancing neurotransmitters in the brain.  He provides fairly detailed explanations of the processes, but in layman's language so that it is approachable by readers who aren't medical doctors or neuroscientists. 

            Beyond education, however, Ratey demonstrates the importance of aerobic exercise to impact a range of health issues facing the country.  He builds the case that aerobic exercise can play a very important role in helping mitigate and treat:

  • Depression and mood disorders
  • Attention deficit disorder
  • Addiction to drugs, alcohol and smoking
  • Hormonal changes in women
  • Dementia
  • Aging.

            He isn't saying aerobic exercise is a panacea for dealing with each of these health issues, but that it can play a very significant role in mitigating them.  As an example, he points to the evidence that a consistent program can be just as beneficial as drugs like Zoloft in fighting depression.  According to Ratey, there's been a good deal of anecdotal of evidence, but now there is scientific evidence to back up what's been informally observed.

            My conclusion is that the application of his ideas could help create major improvements in the twin problems of education and healthcare in the USA.   Moreover, they could provide better outcomes for substantially lower cost.  Consider education first.  In the case of Naperville, IL and Titusville, PA, neither school district spent a lot of money to buy expense equipment or build fancy facilities.  Probably the major expenditure was to purchase heart rate monitors, the devices many athletes use to measure heart rate.  These typically are thin black straps that are fitted around the chest.  It also didn't involve hiring a lot of additional teachers, education specialists or administrators, either. 

            Yet the results were pretty dramatic.  In both cases, student performance on standardized tests improved fairly significantly.  Not only that, but teachers also no longer had to deal with as many behavioral problems with students.  It wasn't that the educational curriculum changed.  It wasn't the result of a fancy new approach to teaching, new textbooks, new computers, or other new systems.  It was simply getting kids to do various forms of aerobic exercise.  For many, it was running around a track, but that wasn't the only choice available to students. 

            With respect to health care, Ratey's proposed solution also doesn't involve a lot of expenditure.  If anything, it involves less expenditure.  Aerobic and related exercise replaces medication, in whole or in part.  For example, instead of medicating children and adults with ADHD, exercise is substituted, with exercise producing results as good as the medication, maybe even better.   In other cases, the aerobic exercise regimen provides a way to avoid other costs, for example:

  • The cost of treating addiction in the standard ways
  • The cost of treating dementia in older adults, because exercise can help stave off the disease for a longer period of time
  • The cost of treating the various diseases associated with aging, because exercise provides a way to help keep older adults healthy for a longer period of time.  Ratey is saying that exercise will prevent these diseases, but it can help delay the onset of symptoms, as well as reduce severity.

            What Ratey is suggesting is pretty simple, and should be pretty obvious, but unfortunately, it probably won't happen, at least not on any large scale.  That's because there are lots of institutional and other forces arrayed against this outcome.  No, it isn't because of some grand conspiracy, or even a series of mini-conspiracies, it's just that for Ratey's approach to be adopted, lots of institutional inertia will need to be overcome.

            For example, Ratey's strategy will result in far fewer pharmaceutical products being consumed, at least when it comes to trying to solve problems with the mind.  For lots of people, that would probably be a great thing, but the pharmaceutical industry certainly won't be amused by this.  After all, pharmaceutical companies are in the business of selling drugs, not sneakers: Roche is not Reebok, Abbott is not Adidas, and Novartis is not Nike.  Moreover, medical doctors are much more in the habit of prescribing pills, not exercise regimens; and even if they were, they still need to persuade their patients.  Which may be the ultimate problem: the average American finds it easier to pop a pill than to exercise.  Until that somehow changes, Ratey's strategy will stay in the realm of "that's a great idea, but not many people will do it".

            It may be different, however, for the education problem.  What Naperville and Titusville have done was pretty simple, and pretty inexpensive.  One could make an argument that teachers and administrators might oppose it, but once they see the outcomes, they're likely to want to join the bandwagon.

          Ratey would like to start a bandwagon, but one hasn't formed, at least not yet.  Why?  Most likely, because the Naperville and Titusville programs aren't particularly well known, at least outside a fairly small circle.  I think the reason may be because what Ratey is proposing is counter-intuitive – hugely counter-intuitive.  But it seems to work, not for magical reasons but for ones based upon the emerging science of exercise and the brain. 

            One of the surprises of Naperville and Titusville is that it wasn't that hard to get kids to participate … and that may lead to an overall strategy for both education and healthcare: get kids to lead the change.  Here's how that might work:

  • Kids getting into better shape, with an associated improvement in educational performance, as well as health
  • Teaching kids the relationship between exercise and brain function so that they grow up understanding the relationship
  • Getting kids to influence their parents.

We're accustomed to having older generations teaching the younger generation.  In this case, the reverse might come into play, with the younger generation leading the way. 

            If that happens, then it would eventually impact overall health and healthcare spending.  It would just take a generation or so.  If a generation of kids grows up understanding the relationship between exercise and brain health, then eventually there may be changes in healthcare as well.  No guarantee, but there's a real chance.  Until that happens, though, nothing is likely to change.  That's because adults already know they should exercise … and some do … but a huge percentage of the adult population doesn't.  It's still easier to reach for a pill made by Roche, not a pair of sneakers made by Reebok.  Not only that, but it's still easier for doctors to prescribe pills, even where the better prescription may be aerobic exercise.  

            On the other hand, we're talking about our brains.  What Ratey is proposing is a fundamentally different way to think about how to take care of our brains, and the positive impacts that could have in so many ways.  If people realize the impact of exercise on mental health, and everything connected with it, maybe they'll get more serious about exercise.

            Even if Ratey's strategy isn't widely adopted, it could still provide lots of benefits to individual schools and individuals dealing with health care.  It's a strategy that can benefit not only the well to do, but also poor people.

            Spark is a most interesting book, and thought provoking as well.  I encourage you to pick it up.   

post a comment

Drones are coming to the rescue in hurricanes, earthquakes and forest fires. They're coming to an even bigger rescue.

            Disasters sometimes have a bright side.  Given all of the recent news about hurricanes, earthquakes, and forest fires, a little bit of good news would certainly be welcome. 

Out of all of this destruction, what could possibly be good news?  Actually, it has to with unmanned aerial vehicles (UAV's), aka "drones".  The good news is they're helping with hurricane and earthquake relief.  The better news is that they're pointing to something else: an even bigger and more important rescue.

            Drones seem to be showing up in all kinds of places.  Hobbyists are the biggest buyers of drones, as approximately 94% of drone sales are in the hobby market.  This is largely due to the tremendous reduction in the price of drones.  You, yourself, may have given or received a drone as a present last Christmas.  The whirring sound of hobbyist drones is increasingly common in parks and neighborhoods around the country. 

            All of these drones have created a range of different problems.  Many, including the Federal Aviation Administration, are concerned by the proliferation, and there's a race to get up to date regulations in place.  There's also been a battle over whether states and localities can set different, stricter rules regulating drones.

            While hobbyist drones are proliferating, so are commercial and industrial drones, just on a different scale.  Only about 6% of drone sales are commercial and industrial, yet that 6% actually represents 60% of the dollar value of drone sales.  That's because the commercial and industrial UAV's are far more sophisticated, and far more expensive, than their hobbyist cousins found in the typical family garage.

            Usage of commercial drones has definitely been growing, but the recent spate of hurricanes, earthquakes, and fires has revealed a potential huge area for these drones – disaster relief.  Just since Irma, the FAA has issued 132 authorizations to use drones in hurricane relief in Florida alone.  Let's consider how they've been used in the wake of Hurricanes Harvey, Irma and Maria, as well as recent earthquakes and fires.

            After Hurricane Irma, the Air National Guard started using drones to conduct aerial surveys, deciding where relief is needed most.  Historically, the task of surveying damage has been painstakingly slow, done on a block by block basis.  Drones can have a hugely positive impact on this.  The Federal Aviation Administration has been quite wary of drones because of air safety concerns.  Yet FAA spokespersons have recently remarked that drones are playing "an invaluable role" in Hurricane Irma relief.  FAA Administrator Michael Huerta recently said, "I don't think it's an exaggeration to say that the hurricane response will be looked back upon as a landmark in the evolution of drone usage in this country."

            In the wake of Irma, the US government's Customs and Border Patrol agency has used drones to map Key West, Miami, and Jacksonville, each significantly affected by the storm.  This mapping process is obviously much faster than the traditional method.

            The Red Cross has been using drones to facilitate relief efforts in the wake of Hurricane Harvey in Texas.

            Besides relief agencies, insurance companies are also beginning to use drones.  For example, Airbus Aerial, a division of European jet maker Airbus, has a division that is deploying drones on behalf of insurance companies.

            A Canadian company called The Sky Guys has been using some its drones to help with mapping after Hurricane Harvey.  Sky Guys typically deploys drones to do infrastructure construction work, so putting some of their drones to work in the Harvey cleanup is a bit of a departure, but one that seems to be working well.

            Another application of drones is to provide emergency mobile phone and Internet service.  Many victims of Hurricanes Harvey, Irma and Maria have contended with knocked out telecommunications.  These days, that's one of the biggest problems.  One of the solutions is to launch drones with 4G LTE service.  Drones are launched and "tethered in place".  It's a bit unorthodox, but who cares if your mobile and Internet service are out and a drone restores it?

            How rapidly is the market for drones growing?  Based upon research by Goldman Sachs, Gartner, and PriceWaterhouseCoopers, very rapidly indeed, and not just for hobbyists!  Gartner says the market grew 60% just from last year to this year.  Goldman Sachs recently issued a report saying that by 2020, the market will be $ 100 billion.  The consumer market will grow to $ 17 billion, but that's dwarfed by the military market ($ 70 billion) and what Goldman calls the "Commercial/Civil" market ($ 13 billion).  PwC goes farther, estimating the worldwide market in 2020 will be $ 127 billion.  These are, of course, merely estimates, but they strongly suggest a very fast growing market.  Given the recent application of drone technology to disaster relief, the estimates may even be understated.

            Besides the interesting fact of these new, innovative uses of drones in disaster relief, I bring this to your attention because it is another example of how technology can once again come to the rescue (no pun intended).  Drone technology is certainly helping with disaster relief in new and innovative ways.  The other reason for pointing this out is as a counter to all of the recent talk about how robots will be bringing forth Armageddon.

            It's hard to find a day when there isn't another news story proclaiming that robots will leave huge numbers of people unemployed.  Robots, like drones, are clearly proliferating.  Unfortunately, the National Bureau of Economic Research, an arm of the US government, recently reported that 6.2 jobs are eliminated with each new robot.  PriceWaterhouseCoopers projected in another recent report that 38% of current jobs could disappear within 15 years, a higher percentage than what's projected for other major economies.

            On the surface, it sounds pretty bleak for lots of American workers, but is it really Armageddon?  I don't think so, precisely based upon the example of drones in disaster relief.  We keep expecting that jobs will disappear – and they do – but we fail to appreciate that new technology also creates new products and services, applicable in new markets.  Ten years ago, if someone told you that drones would be used in disaster relief, you might have laughed, or at least you would have been skeptical, but you probably aren't now.

            Besides hobbyist applications, how many different ways can drones be used?   Goldman Sachs identified the following as significant opportunities for growth:

            Construction               Agriculture                  Insurance claims

            Offshore oil/gas          Police                          Fire

            Coast Guard               Journalism                   Customs/Border Pat

            Real estate                 Utilities                        Pipelines

            Mining                        Clean energy               Cinematography

 

No doubt, if you spend some time thinking about it, you probably can come up with all of other applications. 

            Growth in the UAV/drone industry will doubtless result in large numbers of new jobs.  Many will be related to design, manufacture, sales, distribution and servicing of the drones, themselves, but the vast majority will probably be the industries that put the drones to new, imaginative uses.  Think about all of the people who will be employed in the 15 categories identified by Goldman Sachs for drones? 

            But what about the robots?  Unquestionably, lots of jobs are going to disappear because of robots, but we are not on the verge of Armageddon.  Here's why.  Thomas  Malthus was probably the first to predict that economic and population growth would lead to disaster.  Malthus lived in the late 18th and early 19th centuries in England.  He was a keen student population and made some important observations.  For example, he said, "Population, when unchecked, goes on doubling itself every 25 years or increases in a geometrical ratio."  He was fairly accurate on that.  But from that he concluded, "The superior power of population cannot be checked without producing misery or vice." 

            His predictions haven't come to pass.  Likewise, the doomsday predictions of the intellectual descendants of Malthus – Paul Ehrlich, the Club of Rome, and others - have not come to pass.  The reason is because Malthus and others didn't factor in technological changes and improvements.

            It isn't that technology is a panacea, or some form of salvation, it's just that its application repeatedly results in new and unforeseen improvements that avoid or overcome the disaster scenarios that Malthusians have predicted.  One byproduct of this is that jobs are created in surprising and unexpected places.  The application of drones in disaster relief is but the most recent application of a seemingly timeless concept.  The same with all of the other new applications for drones.

            So robots, themselves a new technology, will probably keep proliferating and destroying jobs.  But other new technologies, such as drones, will create new applications, new industries, new products, and new jobs.

            Drones are coming to the rescue in the aftermath of Hurricanes Harvey, Irma, and Maria, as well as the Mexican earthquakes.  Great news!  They're also coming to the rescue, creating some of the new jobs that will replace the jobs lost to robots. 

            Instead of bemoaning the loss of jobs to robots, I think we should concentrate on asking, what are the most promising new technologies available; how can we encourage the deployment of those technologies to solve problems (e.g., disaster relief), and how can job growth be fostered?  Besides all of the benefits of these technologies, we'll end up with the side benefit of erasing job losses due to robots.  At the same time, just as we focus attention on helping hurricane and earthquake victims recover, we should focus attention on helping robot job loss victims to get retrained so they can take on the jobs of the future.

            Yes, drones in disaster relief: coming to the rescue in more ways that one.

            Please feel free to share your comments.       

post a comment

A review of an interesting new book about 25 scientists and theologians who changed their minds and embraced evolution, all the while maintaining their Christian faith.

I've never had to change my mind about evolution, as I can't ever remember a time I doubted it, but lots of people can't say that.  I've just completed a most interesting book titled How I Changed My Mind About Evolution.  It includes brief personal stories from some 25 scientists and theologians. These people are all committed Christians who previously were skeptical about evolution, but who have now come to embrace it.  In the process of embracing evolution, they continued to affirm their Christian beliefs.

The book is edited by James Stump and Kathryn Applegate, both of whom are connected with Biologos, an organization that endorses the idea that the findings of modern science and the Christian Bible are completely compatible.  Biologos, and those who hold similar views to the organization, often describe this as evolutionary creationism.  This is not the creationism that says the Earth is no more than about 6,000 years old and that humans were specially created by God, not through the process of evolution by natural selection, and that the Biblical Book of Genesis is literally true.  Instead, it fully embraces Darwinian evolution by natural selection.  In that sense, it is identical to the beliefs of people like Richard Dawkins, except that supporters of evolutionary creationism believe that the world was created by God in the Bang Bang, and that the process of evolution is, and always has been, ultimately under the control of God.

Many of these stories are intensely personal, and quite a number of the contributors share very sad tales.  A number are university academics, possessing doctorates in a broad range of fields, and who pursue advanced research.  We like to think that universities are places where competing ideas are shared.  Unfortunately, that wasn't the case for some of the authors, who reported that their colleagues were often close-minded and couldn't understand how any of their colleagues could simultaneously believe in scientific concepts and maintain strong Christian beliefs.  The very same people then reported that fellow members of their churches were equally skeptical that they could be Christians and yet harbor beliefs in evolution by natural selection – a sort of reverse close-mindedness.  In other words, they were greeted with skepticism and mistrust both at work and at church!

Stories with personal drama are often attractive, but why should anyone be interested in the ones recounted in this book?  Having read the book, I think three distinct groups ought to take a look at it.  Surprisingly, the first group includes those who are not Christians.  Why would non-Christians, particularly those who strongly endorse Darwin's theory of evolution, care about a book like this? 

The reason is to help overcome a popular stereotype that Christianity and modern science are incompatible.  This is an idea that has been fostered on one hand by militant atheists such as Richard Dawkins, but also by many fundamentalist Christians who are skeptical of Darwin.  The stories in the book show this simply isn't the case: people with serious scientific credentials can simultaneously endorse ideas such as Darwin's theory and that the universe is 13.8 billion years old.    Many of these are scientists possess very serious credentials.  As an example, Francis Collins, best known as the head of the Human Genome Project, and also the founder of Biologos, has an essay in the book.  Collins is a highly respected scientist who fully embraces Darwin and is a committed Christian.  Another profiled in the book has a PhD in Astronomy from MIT while still another has a PhD in computational cell biology.  No intellectual slouches in the bunch!  Moreover, as noted by one of the contributors, "While [Richard Dawkins and other militant atheist writers] are persuasive, what many readers fail to see is that they misuse the authority of science (the study of the natural world) to claim that belief in the supernatural is irrational."  The notion that you either believe in modern science or you believe in religion is ultimately a cartoonish notion and certainly overly simplistic.  So this book can provide atheists a different perspective, maybe even food for thought.

A second group that should find this book interesting is people who maintain Christian beliefs and also accept Darwin's theory of evolution by natural selection.  I include myself in that group.  For this group the book should be worthwhile if for no other reason that to read the stories of others who have struggled with the issue.  Doubtless, many who are now able to reconcile science and the Bible have faced their own struggles and will recognize similar stories to their own.  The 25 contributors to the book possess a range of views on this subject. 

The third group is the key one to whom the book is directed: Christians who are skeptical of Darwin's theory of evolution by natural selection.  A common experience for the authors was to grow up in a Christian home, exposed to a world that was anti-evolution.  Problems started to arise when these writers became exposed to modern science and found it challenging to reconcile modern science with their Christian beliefs.  Ultimately, each of the contributors found a way to reconcile beliefs, but also pointed out that many others simply couldn't and, as a consequence, lost their faith.

One of the contributors observed that this is a major problem facing churches today: young people grow up in the church, lacking exposure to modern science, then are thrust into the world of universities and popular culture and find themselves un-moored. That was the experience of many of the 25 contributors.   Unfortunately, a very high percentage of 18 to 30 years who grew up in the church are leaving, quite often because of this issue.   Many of the 25 stories are of people who actively fought against Darwin's theory, or who actually lost their faith when they discovered that scientific evidence of evolution ran counter to their faith.  In each case, however, they ultimately found a way to regain their Christian faith, as well as to embrace Darwinian science.

Several of the contributors noted that a core problem is that so many Christians grow up in a world that is seemingly walled off, and one where there is never a serious discussion about modern science and how it might relate to religion.  Increasingly, we all seem to live in our own "filter bubbles", the world of evangelical Christians merely being one.  Atheists appear to have their own "filter bubbles", too.

The writers lament this state of affairs and hope that it will change, but I personally don't expect that to happen.  It isn't because evangelical Christians are ill-educated or stupid, as some might like to think.  That simply isn't the case.  Instead, they resist modern scientific findings about evolution and the age of the Earth because they sincerely feel that modern science is at war with them.  Even a casual reading of Richard Dawkins, Daniel Dennett, and Sam Harris will lead one to conclude the evangelicals aren't just imagining that.

So if the real problem is that evangelical Christians are seemingly close-minded about modern science, how might that resistance be overcome?  Ultimately, I believe it comes to down to a matter of providing a "welcoming environment."   At present, every Christian who rejects modern science as seemingly anti-Biblical has to reach two conclusions: 1) that they've been wrong about the science all this time; and 2) there is a way to reconcile their Biblical beliefs with modern science.  For an awful lot of them, that's a very tall order.  They're being asked to do something that in their minds is very difficult, but they haven't been given a reason they should want to do this.  From their perspective, there is no benefit, at least no perceived benefit, to make the change.  Until Christians who reject modern science as seemingly anti-Biblical can be offered a more "friendly environment", meaning reasons why they would benefit from changing their minds, they're likely to remain highly resistant.   Which then means more and more people, especially younger ones, will reach the proverbial "fork in the road": clinging to their faith or rejecting faith to accept modern science. 

So if that's the case, what might the "benefits" be to an evangelical skeptic of Darwin making a change?  Up to now, the only reason they've been given is, the science is good.  In their minds, that hasn't been compelling. 

I think there is a much better argument.  Instead of saying, believe in evolution because the science is absolutely compelling, I say, believe in it because evolution through natural selection can be used to reinforce two key and distinctive concepts in Christianity.  The first is that mankind is sinful, and that the proclivity for sin has been transmitted down through the generations to every human.  That's always been a core Christian belief, but there really hasn't been any hard evidence of it.  My argument is that evolution actually provides a very reasonable explanation for sin.

The second core idea is that humans cannot overcome this sinful behavior.  In other words, we cannot through our own efforts truly improve ourselves.   We have to depend upon God.  Again, physical evidence for this has been scant.  And again, I believe that modern science, through Darwin's theory, can be used to demonstrate the reality of this idea.

These two ideas form the core of what makes Christianity distinctive.  Therefore, the benefit for Christian skeptics of embracing evolution is the idea of real world evidence that those doctrines are more than just faith.  These ideas are discussed more fully in my book, The Unexpected Perspective

How I Changed My Mind About Evolution is definitely worth your time, and I encourage you to read it, whatever your particular perspective on modern science and religion.

post a comment

There's a lot of concern that climate change is making hurricanes more frequent and worse. That may be the case, but climate change isn't the place to focus attention if you're trying to reduce the impact of hurricanes.

            The incredible destruction wrought by Hurricane Harvey on Texas, as well as that from Hurricane Irma – a disaster that is still in progress as I write this – reminds us of the unbelievable havoc and misery that hurricanes and tropical storms can wreak.  The fury accompanying these two storms has raised an obvious and important question: is climate change making hurricanes worse; and isn't this an important reason to take action on climate change?

            I definitely believe in human-induced climate change, and I also strongly suspect that climate change may well be making hurricanes at least somewhat worse.  But if we want to try to reduce the tragic impact of hurricanes, focusing on climate change is at best a distraction in the effort.  Let me explain how I come to what is probably an unexpected conclusion.

            Before going any further, let's consider why climate change might be making hurricanes and tropical storms worse.  The two key reasons are water temperature and water vapor in the air.  Hurricanes gain their energy from warm ocean temperatures.  In fact, a hurricane can only form if the water temperature is at least approximately 80 degrees Fahrenheit (26.6 degrees Celsius).  It can only be sustained with warm water temperatures.  The warmer the temperature, the greater the chance of a hurricane forming and/or strengthening.  Global warming certainly appears to be increasing water temperatures.  At the same time, higher temperatures tend to increase the amount of water vapor in the air, something else that helps nurture a hurricane and make it more destructive.  So other things being equal, global warming may well be contributing to the problem both of the number and intensity of hurricanes and tropical storms.

            Yes, but it isn't so simple.  Let me explain why.

            First off, even if we could somehow end the problem of global warming and associated climate change, it's not clear what impact there would be on the number of hurricanes or their intensity.  We know this for no other reason that there were intense hurricanes before there was evidence of global warming.  In fact, since the start of the 20th century, the USA has experienced a Category 5 hurricane about once every 25 – 30 years: one in 1900, one in 1935, one in 1961, one in 1969, one in 1992, and now one in 2017.  Category 4 hurricanes are an even more frequent occurrence.  Table 1 below shows a list of the most intense Atlantic basin hurricanes over the past century.  Hurricanes such as the 1900 Galveston storm, the 1935 Florida Keys storm, Carla, and Camille were likely just as intense as Irma and Katrina, and all occurred before global warming was an issue.   So solving the global warming problem is certainly not going to eliminate these hurricanes.  It may reduce the frequency, but even that isn't clear.

 

Table 1: Past Category 4 and 5 Hurricanes

 

Hurricane

Year

Windspeed (Miles/Hour)

Irma

2017

185

Katrina

2005

175

Andrew

1992

175

Camille

1969

175

Carla

1961

175

Mitch (did not hit USA)

1998

180

Rita

2005

180

Florida Keys

1935

185

Gilbert (did not hit USA)

1988

185

Wilma

2005

185

Allen

1980

190

Galveston hurricane

1900

Unknown Cat 5

 

 

            But the intensity of the hurricane really isn't the thing we should be worried about anyway.  Instead, deaths and injuries, as well as the resultant damage, are the real concern.  After all, there have actually been a number of extremely intense hurricanes in the Atlantic that never touched land.  Nobody remembers the names of those storms, and nobody really cares.

            So which storms have actually been the deadliest and costliest?  The deadliest by far was the 1900 Galveston hurricane, which killed an estimated 6,000 people.  They had virtually no warning on that one.  Fortunately, modern technology has helped to provide better warning, with much less loss of life.  The 1926 Miami hurricane killed 372 people, mainly because people didn't understand the calm of storm's eye is but a precursor to another round. 

            Then there's property damage.  Table 2 shows a list of the most costly hurricanes and tropical storms.  One interesting thing to note is that amongst the costliest were storms that weren't intense.  In fact several of them – Tropical Storm Allison and Superstorm Sandy - weren't even hurricanes.  They did incredible damage, however, and besides fatalities and injuries, that's what really gets our attention.

Table 2: Costliest Hurricanes/Tropical Storms

 

Hurricane

Year

Estim Cost (Billion USD)

Hugo

1989

7.1

Jeanne

2004

7.6

Tropical Storm Allison

2001

9.0

Frances

2004

9.5

Rita

2005

12.0

Charley

2004

15.1

Irene

2011

7.3

Wilma

2005

21.0

Andrew

1992

26.5

Ike

2008

29.5

Superstorm Sandy

2012

71.4

Katrina

2005

108

Harvey

2017

100+

 

            Our real concern shouldn't be how intense the storm is, it should be how much loss of life (and injuries), as well as the damage.   To deal with those, there are three things we can focus on.  Let's consider each of them.

            The first is the technology associated with tracking storms and predicting where they'll go.  The 1900 Galveston hurricane killed so many people because there was little technology to track the storm and warn people to get out.  We can and should continue to improve this technology, but we're not likely to have much impact here.  Yes, we can build ever better weather satellites and sensors, but such improvements will probably have only marginal impact.

            Instead, we should give greater attention to the second area where we can improve – building technology and building codes.  The destruction caused by Hurricane Andrew in 1992 led to a detailed review of building codes and practices.  They were strengthened significantly, especially with respect to window and door technologies, as well as methods to insure that roofs won't blow off.  Homes and businesses built since 1992 are far more likely to survive an intense hurricane, thanks to the Andrew-induced changes.  More obviously can be done in this area, particularly in retro-fitting existing structures.

            While spending on hurricane tracking and building technologies can help save lives as well as reduce property losses, there is a third area that will yield substantially greater reductions in deaths, injuries and property damage … and it has absolutely nothing to do with global warming or technology.  Instead, it has to do with zoning and insurance.

            The biggest single danger in a hurricane or tropical storm is storm surge.  The low barometric pressure associated with a hurricane causes the ocean to rise at least a few feet.  The lower the air pressure, the greater the surge.  How do you avoid this problem?  By either not building structures in low lying areas adjacent the ocean, or building the structure high enough that storm surge passes underneath the structure.

            This isn't some great new revelation – it's been known for at least fifty years.  The other thing that's been known for many years is what areas are susceptible to storm surge and flooding.  So you may ask, if we know that storm surge is a problem, and we also know where it could be a problem, why haven't we solved the problem?

            The answer, unfortunately, is that we don't want to acknowledge the problem.  Not only that, we take active measures through our government to make the problem worse.   Let me explain how, and why.

            We have pretty detailed maps that show what areas in the country will flood, as well as the estimated frequency of flooding.  This is quite well known for coastal areas, especially low lying coastal areas.  You may ask, if we know the relative frequency that these low lying coastal areas will flood, why do we build structures in those areas?

            It's a good question.  Some say we shouldn't build structures in low lying coastal areas for this very reason.  One way to solve the problem is through property insurance.  Unfortunately, about fifty years ago, property insurers concluded that flood insurance simply wasn't a good product to sell.  This is because the property insurers calculated they would have to pay out too many claims and wouldn't be able to make money.

            To rescue came the US government, which decided to provide insurance companies guarantees for the flood insurance policies they wrote. This helped foster the development of property in flood prone areas, including areas subject to hurricane storm surge.  Lots of people were happy about this – property developers, because they could build beautiful beach front developments; and buyers.  So what could go wrong?  Plenty.

            Remember that the reason the Federal government started guaranteeing flood insurance policies was because the private market wasn't working.  By getting involved in flood insurance, there have been a whole host of unintended consequences.  The key one is that a huge amount of development has occurred in these flood prone areas.  Every time a hurricane or tropical storm hits, huge claims need to be paid.  The real reason the costs in Table 2 are so high is because these storms did serious damage to structures that were principally located in flood plains.   The 1926 Miami hurricane, a pre-global warming storm, killed lots of people and did a lot of damage.  If the same storm occurred today, it's estimated it would cost $ 164 billion in damages.  This is because of so much development, as well as lots of it in flood prone areas.

            Unfortunately, the problem just gets worse, because we keep permitting development in known flood plains; and that development is backstopped the Federal government.

            We probably can't do much about reducing the number of hurricanes and tropical storms we have, at least in the short run, but we can do something about building structures – especially expensive structures – in known flood plains.  If we curtailed the number of structures in flood plains, we're likely to reduce storm induced damage there.

            We could materially reduce the terrible cost of hurricanes by focusing on items two and three (i.e., improving building codes, zoning,  and reducing the amount the amount of construction in flood plains.

            Here's the really good news about this.  It can all be done without the Paris Climate Accord … without developing any new technology to reduce carbon emissions … and without worrying about who is the President of the United States.  Much of it can be done without even spending money. 

            If it is indeed that easy, why hasn't it been done?   Quite simply, because there are lots of incentives to build structures in known hurricane flood plains, but not enough dis-incentives to prevent this from happening.  The incentives are obvious: buildings near the sea are highly desirable.  Economic development of the beach is highly attractive for lots for people.  The disincentives are far less obvious.  The big disincentive – paying out Superstorm Sandy size insurance  claims – just isn't a disincentive until it happens.

            What realistically can be done?  At one extreme, we could stop all development in flood prone areas.  Pretty draconian, but that would reduce the problem going forward.  At the other extreme, we could end all Federal flood insurance guarantees and just let the marketplace sort out the risk.  This solution would save taxpayers a lot of money, but it would create problems, especially for lower income groups.  Moreover, it would be very unpopular with those whose insurance is presently being subsidized.  Any way you look at it, there are tough choices to make.  The key point, however, is that these are the real decisions that need to be made if we want to reduce the cost of hurricanes.

            This problem isn't limited to construction of properties that are in storm surge prone areas.  The case of Houston and Hurricane Harvey is instructive here.  The impact of Hurricane Harvey on Houston was not related to storm surge.  Even though Houston is a good distance from the Gulf of Mexico, it still has numerous areas that are prone to flooding.  Yet there's been lots of development in those areas thanks to government backed flood insurance. 

            The other thing about Houston is that flooding is a recurring problem.  I personally experienced in 25 inch rainstorm in Houston one day in the summer of 1976.  It had absolutely nothing to do with a hurricane.  The flooding was horrendous.  There have been numerous other floods since.  The problem is exacerbated by poor soil, excess construction, and inadequate zoning – all problems which are understood, but for which not enough has been done. 

            Hurricane or no hurricane, these are costly and deadly problems that need to be prevented.  My point is that one can superficially cite global warming and climate change as the cause, but by doing so one obscures the real problem: building in flood plains and inadequate building codes.

            So while it's important to deal with global warming and climate change, let's not let that be an excuse.  When it comes to problems like hurricanes, lets focus attention on solving the real problems.   

            Please share your thoughts, whether you agree or disagree.  Thanks for reading.   

post a comment

The long held assumption is that life first appeared on Earth. But what if life actual predates Earth, and life forms somehow were transported here after Earth's formation?

            Many people readily accept the idea that Darwin's theory of evolution by natural selection applies on a micro scale, meaning at the level of bacteria and viruses, and maybe even to some extent at the level of species.   While they accept these ideas, they reject the idea that Darwin can explain the evolution of life from its most basic forms up to humanity, meaning that while microevolution is real, macroevolution is not.  The argument is that supporters of macroevolution have stretched the available data and have "overplayed the hand".

            One of the key arguments that skeptics of macroevolution have used is that there simply wasn't enough time to explain the appearance of organisms as complex as bacteria and viruses.  The argument hinges on the evidence that the Earth is about 4.5 billion years old, and the amount of time between the formation of Earth and the emergence of bacteria and viruses is therefore too short.  Implicit in this is the idea that life must have developed "from scratch" here on Earth.  But what if that's a bad assumption?

            Two scientists who have called this assumption into question are Alexei Sharov, a staff scientist at the National Institute of Aging, and Richard Gordon, a Theoretical Biologist at the Gulf Specimen Marine Laboratory in Florida.  Sharov and Gordon use a novel way to estimate when life first appeared.  As a proxy for the complexity of life, they consider the number of base pairs in an organism.  More complex organisms have more base pairs than less complex organisms. They observe that number of base pairs of organisms has increased at an exponential rate over time, much like Moore's Law. 

           In 1965, Gordon Moore looked at the number of transistors on a computer chip and noted that it was doubling every 18 to 24 months.  "Curve fitting" just four data points (1962 – 1965), he projected that this exponential growth, referred to as Moore's Law, would continue into the future.  In the original paper his projection only went 10 years into the future – to 1975.  His ten year projection has taken on a life of its own, and for the past 50 years, his projection has proven accurate.  Sharov and Gordon use this as a model and suggest a "reverse Moore's Law".  If you look at the historical data for the number of transistors on a chip, you could project backwards to when there were only a handful of chips, all the way back to 1959, the starting point for Moore's original curve fitting graph.  For example, if one looks at number of transistors on a chip at various points from 1995 to 2015, then one could "reverse project" that there were only a few transistors on a chip back in the 1950's.  The "reverse projection" would be quite accurate.   

            Sharov and Gordon apply this line of thinking and do a similar "reverse projection" for genetic complexity (see the chart above).  They look at the time that various organisms (e.g., prokaryotes, eukaryotes, worms, fish and mammals) emerged, and plotted those dates against the genetic complexity of each type of organism.  Eukaryotes and prokaryotes are both organisms with cell membranes, but eukaryotes also have a nucleus.  Their "reverse projection" suggests that "genomic complexity of zero, meaning just one base pair of nucleotides", would have occurred approximately 9.75 +/- 2.5 billion years ago.  That's well past the date of the Big Bang (approximately 13.8 billion years ago) but also well before the formation of Earth (about 4.5 billion years ago).  Even at the outer lower bound, Sharov and Gordon say that life emerged 7.25 billion years ago, still well before our Earth formed.

            Thus, Sharov and Moore's proposal could address the objection that many have raised about the appearance of life on Earth.  One might argue that life could not realistically have arisen with 500 million years of the formation of Earth, but 5 billion years is more than realistic.

For Sharov and Gordon's theory to be realistic, two key questions need to be answered.  First, could life have begun from only one nucleotide base pair?  Second, if life began before the formation of Earth, how did early life forms survive travel through interstellar space and arrive intact on Earth?

            With respect to the first question, Sharov and Gordon present a theory based upon what they call coenzyme like molecules (CLM's).  Their model is hypothetical, but is certainly not out of the question.    The core idea is that CLM's could be a realistic precursor to the nucleotides A, C, G, and T that underlie genetics.  Sharov and Gordon hypothesize that CLM's existed in a hydrocarbon microspheres.  These hydrocarbon microspheres could have created a realistic environment for nucleotides to emerge.

            Assuming the original nucleotides emerged about 9.75 billion years plus or minus a couple billion years, somewhere in the universe, how did those nucleotides traverse interstellar space?  If that question cannot be adequately answered, whether or not the original nucleotides did emerge at the time hypothesized by Sharov and Gordon, then the idea of life emerging elsewhere in the universe and being transported to Earth is effectively moot.  Sharov and Gordon cite the research of L.H. Lambert and others that staphylococcus succinus was extracted from Dominican amber.  The spores had been dormant for 25 to 35 million years.   At the same time, Sharov and Gordon cite research by Richard Gordon and R.B. Hoover that "remnants of planets from exploded supernovae can carry billions of bacterial spores and maybe even active chemosynthetic bacteria deep beneath the surface."  In other words, bacterial spores could have been buried in interstellar material, laying dormant for possibly millions of years, then revived in another world.  Sounds somewhat far-fetched, but not necessarily unrealistic.

            If Sharov and Gordon are right, then the idea that genetic diversity follows a Moore's Law type of curve isn't far-fetched at all.  Moreover, it could overcome the perceived problem that bacteria and viruses could not have formed on Earth because of the short time period from the formation of the Earth until their appearance.

            What, then, of the idea that life emerged 9.75 billion years ago, about 5 billion years before Earth formed?  The reason this isn't necessarily a crazy is because the universe appears to have as many as 10,000,000,000,000,000,000,000 (that's 10 to the 22nd power) stars like our own.  While only a very small fraction of those stars are likely to have had planets with conditions that could have supported the emergence of life, the sheer number of possible candidates makes this a very realistic scenario.  Assume, for a moment, that there was only a one in a trillion chance that any particular star could have had a planet capable of supporting life of some sort.  Even if that is the case, there would still be approximately 1,000,000,000 (one billion) stars capable of sustaining life.  If it was a one in a quadrillion chance, then approximately one million stars have planets orbiting them that are capable of supporting life.

The Big Bang occurred about 13.8 billion years ago.  Assuming Sharov and Gordon are correct, then the first life forms appeared about 4 billion years after the Big Bang.  Four billion years should have been adequate time for life forms to have emerged.

            Assuming this is the case, were the life forms that were transferred to Earth advanced and intelligent?  The idea that Earth was seeded by intelligent life (sometimes known as "directed panspermia") is fairly well known.  Sharov and Gordon reject the idea that the Earth was seeded by intelligent life.  This is because they believe it would have taken at least 10 billion years for intelligent life to have formed.  Assuming the Big Bang really did occur 13.75 billion years ago, then even if life formed within a billion years of the Big Bang, at the time of Earth's formation (4.5 billion years ago), then life could only be about 8 billion years in age.  Sharov and Gordon contend that it would have taken at least 9 or10 billion years for intelligent life to form (refer back to the chart above), thus it would have been impossible for the Earth to have been seeded by intelligent life.

            Non-religious people should have absolutely no problem with Sharov and Gordon's theory, but can the same be said for Christians?  I really don't think it should create problems for most Christians.    

            Young earth creationists (YEC) will definitely have a problem with the theory, but anyone who is a YEC would have problems with any theory suggesting that the Earth, much less the universe, is much older than about 6,000 years.  Young earth creationists believe in a literal interpretation of the book of Genesis.  On the other hand, old earth creationists and evolutionary creationists (the latter being, like me, those who believe that God created the world using Darwin's evolution by natural selection) should have no problem with the theory. 

            The Bible says that God created all life, but it doesn't say where or when it happened.  The assumption has always been that life was created on Earth, but it doesn't specifically make that statement.  For most of history, most everyone assumed that life was created on Earth, but no one was aware of the sheer size and age of the universe, and no one was aware of the genetic curve calculated by Sharov and Gordon, suggesting that life began about 9.75 billion years ago.

            At this point, Sharov and Gordon's analysis doesn't prove or disprove anything, but I believe it is useful because it helps reduce constraints on our thinking about how life emerged.  For the longest time, we've constrained ourselves to the assumption that life had to have begun on Earth, not somewhere else.  The available data have not always

fit this model well.  Eliminating the constraint creates the possibility of other alternatives.  At the same time, it also doesn't provide any more evidence that life spontaneously emerged, the claim of many atheists and non-theists.

            If anything, the argument made by Sharov and Gordon should be encouraging for Christians who believe that Darwin's theory of evolution by natural selection is correct.  This is because it provides a way to overcome the objection that life could not have emerged on Earth according to Darwin's theory because of the relatively short time between the formation of the Earth and the emergence of life. 

post a comment

We try to persuade others to have a change of mind, but keep using tactics that we know would never persuade us to change our mind.

            "YOU SHOULD BELIEVE THIS BECAUSE ..."

When you hear or read those words, what's your immediate reaction?  I don't know about you, but for me, my guard goes up.  It's almost the reaction that Pavlov's dogs had: when the bell sounded, the dogs salivated … and when you hear or read those words, your guard goes up.

            "BECAUSE I'M YOUR PARENT …"

You almost certainly remember that line.  Probably the first time you remember hearing someone tell you why you should believe something … and it very likely was a good idea … because when you were a small child, your parents REALLY did know what was best for you.  That line of reasoning made sense until you reached the point where that was no longer a good enough reason just to believe something.  If you're adult, you probably reached that point some time ago.

            So you probably no longer have your parents telling you what you should believe, but now you have other adults doing the same!  For example:

            "YOU SHOULD BELIEVE THIS BECAUSE …

                        I HAVE THE FACTS ON MY SIDE"

                        I HAVE SCIENCE ON MY SIDE"

                        I'M SMARTER THAN YOU ARE".

            So let me ask you, as an adult, how often have you been persuaded when you hear those types of arguments?  I'll bet your guard goes up, and you're not the least bit persuaded … even if the person made some good arguments.

            So why am I making a point about something that is actually a "flash of the blindingly obvious?"  Because while we know that we're not persuaded by these arguments, we somehow tend to forget this when we're trying to persuade somebody else to adopt our views.

            Let me offer a real life example of this.  Virtually all scientists believe that Charles Darwin's theory of evolution by natural selection is correct.  In their minds, and mine too, it's a slam dunk.  Nevertheless, half of adults in the USA don't believe that Darwin's theory is persuasive; and two thirds to three quarters of evangelical Christians are skeptical.  The scientists just can't believe that anyone would reject such good science.  How can this be?

            It's been said that the only people who are surprised about this are the scientists themselves! 

            Why am bringing this up?  Simply because when it comes to trying to persuade people to change their minds about something, we tend to go about the entirely wrong way.  When we try to persuade people to change their minds, too much of the time we're trying to persuade by saying, "YOU SHOULD BELIEVE THIS BECAUSE …", when we all know that when people try to use those lines on us, we're not persuaded!

            So if we're trying to persuade someone, we should keep the following principle in mind: people believe things for their own reasons, not yours.  If you're going to persuade them to change their minds and adopt your idea, you have to do it in a way that fits their way of thinking, not necessarily yours.

            So how do you that?  By beginning your "task of persuasion" by asking two questions: first, why should someone want to change his or her mind?; and second, why would I ever change my mind?  Well, you already know, it won't be because someone told you to change your mind for their reasons … but will you change your mind because you think it's a good idea?

            Most likely, you have before … and you will again.  That's because you're changing your mind for your good reasons, not somebody else's good reasons.

            You'll probably also consider changing your mind about something if you think it will benefit you somehow.  I don't know about you, but if I perceive that I could benefit by changing my mind about something, I'm pretty likely to give it some serious thought. 

            So let's now go back to the thing that astounds so many scientists: that so many ordinary Americans are skeptical about Darwin's theory of evolution by natural selection.  Contrary to what many people seem to believe, the reason isn't because these people don't believe in science or scientists.  Actually, the data show that ordinary people tend to have lots of respect for science and scientists.  A wonderful example of that occurred just the other day when a total solar eclipse by millions of people across the USA.

            Instead, the following are more likely reasons for skepticism:

  • They perceive a conflict between Darwin and something else they cherish: the Bible;
  • They perceive that they're being asked to make a choice between one thing and the other, meaning that they think they're being asked to make a choice between science and religion;
  • No one has given them a reason they should want to believe in Darwin (i.e., they haven't perceived a benefit for changing their minds).

When you frame the matter in these terms, it really isn't that surprising that there is a fair amount of skepticism.  So with that in mind, how might one try to persuade the Darwinian "skeptic" to reconsider? 

            Unfortunately, it's often using the following  types of arguments.  "YOU SHOULD BELIEVE IN DARWIN BECAUSE THE SCIENCE IS BEYOND QUESTION!"  Well, with the above in mind, do you think that's going to be a persuasive argument?  How about, "YOU SHOULD BELIEVE IN DARWIN BECAUSE TO BELIEVE ANYTHING ELSE IS JUST PLAIN STUPID"!  In light of what I've just discussed, aren't these types of arguments pretty ridiculous?  Yes, you can see that.

            So how about the following argument: "YOU SHOULD BELIEVE IN DARWIN BECAUSE IT ISN'T INCONSISTENT WITH THE BIBLE IS SAYING."  This is an argument that Christians who believe in Darwin try to use of Christian skeptics.  Why might this argument be less than persuasive?  Because you still haven't given the person a reason they should want to have a change in mind.

            These reasons aren't very persuasive, but there's actually another one that may be the least persuasive of all.  Many Christians who believe in Darwin and evolution by natural selection have also concluded that Adam and Eve, and the whole Garden of Eden story at the start of the Bible, didn't really happen.  It's all symbolic, and a whole range of arguments have been developed as to why that might be true.

Well, the arguments may be very well formulated, but if the goal is to persuade evangelical Christians to change minds and hearts about Darwin and evolution, this is a non-starter.  Making that kind of argument is about the same as a telling a young mother her baby is ugly, and then saying, "but let me share with you why I think you ought to believe such and such …" Having heard those words about her baby being ugly, you know perfectly well that the young mother stopped listening.  Well, evangelical Christians tend to stop listening when part of the argument is that Adam and Eve were non-historical, legendary figures.  GAME OVER!

            Thus, with all of the above in mind, if the goal is to persuade skeptical Christians to have a change of mind about Darwin, I believe the argument will have to accomplish two things:

  • Provide a way that there can still be an historical Adam and Eve (the "ugly baby" argument);
  • Provide a reason (or reasons) why the skeptical Christian should want to have a change of mind.

If those two things can't be done, the average evangelical Christian, who is already skeptical of Darwin, isn't going to have a change of mind.

            So let's consider each of these, beginning with Adam and Eve.  Is there a way that Adam and Eve could have been flesh and blood individuals and still be consistent with the available scientific data?  Yes.  Now that doesn't mean they were the original two humans from whom everyone else is descended, as a literal reading of Genesis would suggest.  The available scientific data suggest that is impossible.  However, the data suggest that the original human population was at least 5,000 individuals.  Adam and Eve could easily have been two members of that original human population; and if you assume that Adam and Eve were two members of that original human population, the key elements of the Garden of Eden story fit not only with the Biblical account but also with available scientific data.  Thus, there is a reasonable way to keep Adam and Eve and the Garden of Eden as historical, and still fit the available scientific narrative about evolution by natural selection.

            I believe this needs to be starting point of any attempt to persuade skeptical Christians to embrace, otherwise it will immediately turn into "your baby is ugly", and the person to be persuaded will have stopped listening.  Necessary, but not sufficient. 

            Assuming you've overcome the "historical Adam and Eve" issue, you then arrive at the question, why might a skeptical Christian want to believe in Darwin?  Let me suggest four types of reasons:

  • Reason #1: accepting Darwin's theory will reinforce something that the Christian already believes about Christian doctrine;
  • Reason #2: accepting Darwin will help the Christian be a better evangelist;
  • Reason #3: accepting Darwin will help the Christian address concerns he or she has with how science is taught in school;
  • Reason #4: accepting Darwin will help the Christian defend his or her faith against attack by others.

There isn't adequate time or space to go into each of these types of reasons.  If you want to explore this further, consider looking at my book, The Unexpected Perspective.  The overarching point is that if your goal is to persuade someone to re-think something, you need to build persuasive arguments; but what is persuasive to you may very well not be what could be persuasive to your audience.  So before you start trying to build your next set of arguments, stop and ask the following:

  • How does my audience look at the world?;
  • How might my arguments unintentionally leave the audience thinking I just said, "your baby is ugly";
  • How could what I say actually benefit my audience, for their reasons, not mine?

            I've given a set of examples related to Christians and Darwin's theory of evolution, but the same principle applies for all kinds of other issues.  As an example, how do you persuade skeptics that climate change is real?  Everything I've said above about science and religion applies pretty much equally in the climate change debate.  I encourage you to go back and read this post, but substitute "climate change" for Darwin and evolution.  I think you'll see my point.

The good news is, in the right circumstances, most people are willing to consider different ways of thinking.  They can be persuaded … but persuasion is an art that needs practice and nurture.  The capacity to persuade others is an incredibly valuable skill in virtually all walks of life.  Valuable, yet oftentimes under-appreciated.

            At the same time, please understand, I'm not in the least suggesting that you try to persuade others by lying or making misrepresentations.  There is absolutely no room for "alternative facts" (aka lies).  Persuasion requires empathy, and empathy and lying in my mind are in parallel universes.

            If we hope to be persuasive, we need to develop our skills and practice.  We can all benefit.         

           

post a comment

This post looks at a new book on three distinctly different ways for Christians to think about creation.

As I've said many times, we all have a tendency to try to organize ideas and information into neat little "either/or" categories, then overlook or obscure any nuance or subtlety.  A great example of this concerns Christianity and beliefs about evolution: if you believe in modern science, you'll certainly believe in Darwin's theory of evolution by natural selection, and also probably reject what the Bible says; and conversely, if you believe the Bible, you'll reject modern science.

            My book, The Unexpected Perspective, shows why this is a false dichotomy and a vast oversimplification.  In this post I'd like to introduce you to another book that explores in greater detail why there is no religion/science dichotomy.  The book is call Old Earth or Evolutionary Creationism? and was recently published by InterVarsity Press.  I'll explain in a moment why I think it's worth your while to pick up this book, but let me first give you some background on how it came to be published, which is an interesting story in itself.

            The Southern Baptist Convention (SBC) is one of the largest Protestant Christian denominations in the USA.  By its own estimate, most of its members are young earth creationists.  That means they believe the Bible literally, including the idea that the world is no more than about 6,000 years old. They also believe in a literal seven day creation cycle; that all humans descend from an original pair named Adam and Eve; and that Darwin's theory of evolution by natural selection is hogwash.

            The Southern Baptists appear to reinforce the stereotype that religion and science are mutually exclusive.  But the SBC realizes this is an oversimplification; and to their credit, they've sought out a dialogue with two key Christian groups who look at science and the Bible differently than does the SBC: Biologos and Reasons to Believe (RTB).  Both Biologos and Reasons to Believe are composed of people who are simultaneously committed Christians and committed scientists.  Biologos was founded by Francis Collins, the head of the Human Genome Project, and Reasons to Believe was founded by Hugh Ross, who holds a PhD in Astronomy and spent five years as a postdoc at California Institute of Technology.  By no means can one consider either founder to be a scientific slouch!

            As such, this new book represents a dialogue between three groups of committed Christians about the relationship between modern science and Christianity, with the young earth creationist group (the Southern Baptists) posing questions to the other two groups (Reasons to Believe and Biologos).  So just what are some of the similarities and differences in their viewpoints?

            The first concerns the age of the universe.  While young earth creationists believe the universe is only about 6,000 years old, based upon a literal interpretation of Genesis, both Reasons to Believe and Biologos embrace the evidence that the universe started with a Big Bang and is about 13.8 billion years old.  This is hardly surprising given that RTB's founder is an astronomer, and Deborah Haarsma, the president of Biologos, has a PhD in Astrophysics from the Massachusetts Institute of Technology.

            The second is that both accept the reality of Darwin's theory of evolution by natural selection, but they do differ on the extent of its applicability.  The key to the disagreement appears to be the question of "common descent".  Common descent is the theory that all creatures have a common origin.  In particular, humans and lower primates such as apes, monkeys and orangutans all have a genetic common ancestor.  Biologos embraces this idea, as do I.  In contrast, Reasons to Believe maintains that God created humans separately and specially: we do not have common ancestry with the lower primates, or any other organisms, for that matter, even though we appear to share a large amount of DNA.

            Reasons to Believe further insists that the literal narrative of Genesis is true.  With respect to humans, that means God created Adam and Eve in a special way, and that all humans are descended from that pair.  Reasons to Believe and the Southern Baptists are very much in agreement on this, in contrast to Biologos.  Much of the book focuses on various aspects of the question, are humans common descendants (the Biologos viewpoint, as well as that of Darwinians) or a special creation (the Reasons to Believe viewpoint)?

            SBC posed a broad range of questions to Reasons to Believe and Biologos.  These questions covered not only biology and genetics, but also geology, anthropology, the fossil evidence, and a range of issues related to Biblical interpretation.  While one may disagree with their thinking, one cannot accuse the Southern Baptists of not giving serious thought to the entire subject.

            As mentioned earlier, the people at Reasons to Believe are serious, competent scientists, so one must ask, what scientific evidence could they present that would support the idea of Adam and Eve as a real pair of humans, from whom all are descended?  The RTB spokesman cited the evidence of mitochondrial Eve and Y-chromosomal Adam.  That's evidence that all females can trace ancestry to a single woman called mitochondrial Eve and all males can trace ancestry to a single male called Y-chromosomal Adam.  Until recently, data suggested that mitochondrial Eve and Y-chromosomal Adam lived about 80,000 to 100,000 apart from one another, thus they never could have been a couple.  RTB says new research suggests they lived at the same time, but the spokesman never cites any specific evidence.

            Let's assume, for a moment, that RTB is correct in saying that mitochondrial Eve and Y-chromosomal Adam could have been contemporaries.  The spokesman for Biologos, however, presented the argument that there never could have been an original pair simply because the original population of humans could not have been fewer than 5,000 or so, likely more.

            Biologos presents a strong set of arguments to counter those made by RTB.  I think the case could been even stronger, but there was obviously an editorial limitation placed on the participants.  So what additional evidence might Biologos have presented?   The work of Francisco Ayala, cited in my book, is an excellent example of this evidence.  Ayala traced the DRB1 gene, present in humans and other primates, back to identify a common ancestor who lived about 105 million years ago.  We, and our non-human primate cousins, all have one of the variations of this gene.  The variations in this gene are excellent evidence that there could not have been just an original pair of humans.  Note that there are other forms of evidence supporting the Biologos argument, but Ayala's evidence seems pretty compelling.

            But apparently it still isn't sufficiently compelling to convince lots of evangelicals to reconsider the "common descent" issue.  I sensed frustration on the part of the Biologos spokesman in chapter 10.  No matter how much evidence, and how many compelling arguments, he couldn't get RTB to budge on the question of "common descent". 

The reason, I believe, has to do with the "historicity" of Adam and Eve.  Evangelical Christians believe that there had to have been a literal Adam and Eve.  Absent that, in their minds, it's "game over".  On the surface, it appears that evangelicals are faced with the choice of either accepting the science that there couldn't have been an original pair, or accepting the Biblical account.  Looks like "game over", unless someone can present a case that includes three key elements: 1) a real life Adam and Eve; 2) consistency with the available evidence for common descent; and 3) consistency with the Biblical narrative.

            Elsewhere, Biologos builds a strong case that Adam and Eve may have been archetypes, not real individuals.  Unfortunately, that tends to leave many evangelical Christians cold.  Thus, even though the Biologos case for common descent being consistent with the Bible may be strong, it feels like "game over" to unpersuaded evangelicals.

            I think Biologos is right, so how might they reframe their arguments so that they might be more appealing to many "un-persuaded" evangelical Christians?  For the answer, consider the argument I make in my book, The Unexpected Perspective.  Let me briefly summarize the argument.  I believe modern science is correct in saying that the original group of humans could not have been fewer than five or ten thousand.  The evidence looks pretty strong.  How, then, could there have been an historical Adam and Eve?  The simple answer is that Adam and Eve could have been two people in the original multi-thousand human population.  They were merely representative of everyone. 

            Is such an interpretation consistent with the Bible?  Actually, yes.  Assume for a moment that there had been just an original pair, Adam and Eve.  They had children, Cain and Abel.  Cain married a woman who bore a son, Enoch.  Well, if Adam and Eve were the literal first humans, who were the parents of Cain's wife? If Adam and Eve were the parents of us all, Cain's wife was also a child of Adam and Eve, so Cain married his sister!  Does that mean that incest is okay because it's in the Bible?  Ugh!!

            Another piece of evidence is found at Genesis 4:15.  As is well known, Cain killed his brother Abel.  As punishment, God banished Cain, sentencing him to a life of wandering.  Cain protested to God, saying that if anyone found Cain, they would kill him.  God reassures Cain that won't happen. 

            Well, if there had been  just an original pair, that dialogue would have been moot because there wouldn't have been anyone else to kill Cain.  But the words are there, suggesting that there were other humans besides Adam and Eve and their descendants.  What this means is that the Bible is more in accord with the science of an original human population of many thousand than with the original pair scenario. 

            As such, by adopting the Biologos position, the Southern Baptists could actually address each of their major concerns: a) a real life pair named Adam and Eve; and b) consistency with the evidence of modern science.  If the Southern Baptists rely upon the RTB position, there will be two key problems: a) it will imply incest; and b) it will not be in accord with the genetic evidence.

            Unquestionably, evangelical Christians believe it is critical to have a real life Adam and Eve.  If Biologos, and other Christian groups who embrace Darwinian science, hope to win the hearts and minds of evangelicals such as the Southern Baptists, they'll need to provide a way to embrace both common descent, and everything that goes with that, and a literal Adam and Eve.  As discussed, there is such a way.

            There are many other dimensions to this book, in recognition of the fact that this is a multi-faceted issue.  I strongly commend it to a broad audience of readers, and thank all three groups – the Southern Baptist Convention, Biologos, and Reasons to Believe – for their dedicated efforts to find common ground.

post a comment

North Korea's Kim Jong Un poses a serious threat to the USA and its allies. This blog post suggests a different, and unexpected, way to think about how to deal with the threat.


 

It seems every time you open your news feed, turn on TV or radio news, or read a newspaper, there's a story about something that Kim Jong Un, the North Korean dictator, has done.  Since he came to power a few years ago, many of those stories have been funny, but increasingly they're frightening.  Kim Jong Un's relentless pursuit of nuclear weapons and missile technology may be one of the biggest menaces faced by the USA, and many other countries, in decades.  The policy choices facing the Trump Administration, as well as America's allies, and even competitors like China and Russia, are increasingly unpalatable.  A nuclear war of any sort is pretty much unthinkable, but that's looking increasingly likely.  Is there any new place to search for ideas or inspiration?  "The Unexpected Perspective" blog focuses on looking at important issues from surprising and unexpected angles, and that's what I propose here.

            The obvious place to seek ideas is the Cuban Missile Crisis in 1962, but I think there may be a better one; and it's from pretty unexpected place: the Bible.  So what insight might the Bible have with respect to Kim Jong Un?  I think it's the Old Testament story of David and Goliath.  The story has inspired Christians and Jews for more than 2,000 years, and it's even an inspiration for many non-Christians.  In the story the Israelite army faces off against the army of the Philistines.  Each army is lined up on opposing sides of a valley.  Rather than have the two armies attack one another, the proposal is for each army to offer up one soldier to represent his army.  The "two man" contest will determine the outcome of the war. 

            The Philistines offer up Goliath, a huge man bedecked in full armor.  Goliath is so large, so fearsome, that no Israelite warrior wants to take him on.  Who could blame any of them?  The most unlikely warrior of all then offers himself, a teenage shepherd named David.  David is offered armor and a sword, but eschews them in favor of his sling shot and some stones.  All figure it will be a suicide mission until David surprises everyone by knocking down Goliath with a single shot from his sling.  He then slays the wounded Goliath and the Israelites are victorious.

            Christians and Jews, including myself, have always believed that God was behind David's victory.  The fight, however, really wasn't as lopsided as everyone has tended to believe.  On a practical level, David's victory included three strategic elements: 1) surprise; 2) avoiding the strength of the enemy; and 3) changing the "rules" and playing to his own strength.  If David had played Goliath's "game" of fighting with swords and armor, he would have surely died.  Instead, he used a sling shot – a highly lethal weapon in its own right when used by an expert – and brought Goliath down.  He surprised the Philistines, played to his own strengths and away from Goliath's.  When the game changed, David's weakness was the inspiration for his strength, and Goliath's strength - being in armor and wielding a sword - became a great weakness.

            An ever-inspirational story, but what in the world does it have to do with Kim Jong Un?  My belief is that today we have a "David and Goliath story" in reverse:

  • The USA and its allies are Goliath;
  • Kim Jong Un is David;
  • Kim Jong Un wants to "play out" the story and is trying to draw the USA and its allies into the battle, but on his terms, not ours.

On the surface, it definitely does look like "David and Goliath": the USA is far superior to North Korea, both in economic and military terms.  If the two countries engage in nuclear war, the USA will highly likely blow North Korea off the face of the Earth.  Unfortunately, there will be huge collateral damage to South Korea and possibly other countries, including the USA.  Definitely, a pretty awful scenario, with millions of casualties; but the USA would certainly be "victorious", even though the USA victory in such a contest would be an incredibly hollow one.

What is a little less obvious, however, is Kim Jong Un's "sling shot".  It isn't the nuclear weapons he is building, or even the missile delivery system.  If Kim tries to use these weapons, it would be comparable to the Biblical David utilizing the sword and armor provided to him, but which he rejected.

Instead, in my mind, Kim Jong Un's "sling shot" is cyber hacking.  While Kim can't possibly win a war against the USA with missiles and nuclear weapons, he could potentially win one if it's a battle of cyber hacking.  There's no question North Korea has developed formidable hacking prowess.  The WannaCry virus had significant impact several months ago, but what if that was merely a "dress rehearsal", or "battle game", to test North Korea's capabilities?  They could very well have been holding back. 

Now imagine that North Korea launched a live attack, for example, against the USA's electrical utility grid?  Not only might they disable it, they could potentially literally destroy infrastructure in the USA.  Imagine they did it in the dead of winter?  Or what if they went after other vulnerable points?  They're all kinds of them.  The good news is that the USA and other developed countries have so much advanced computing technology, and the bad news is that we have so much exposed advanced computing technology.  Imagine, a bloodless war launched from desktops in Pyongyang? 

The idea of such an attack is certainly not far-fetched.  There is evidence the Russians have been deploying a similar strategy against Ukraine's electric utility grid the past several years.

So let's get back to David and Goliath.  David completely surprised Goliath and the Philistines, and won the battle he could win rather than the battle that Goliath could win.  My assumption is that while Kim Jong Un seems to act irrationally, he is anything but irrational.  The fact that he has systematically eliminated all of his opponents in North Korea leads me to think he isn't a crazy man; he's only feigning craziness.  Assuming he isn't crazy, then he isn't going to launch a nuclear war that he would surely lose. 

So is there a lesson out of David and Goliath that the USA and its allies might apply?  Here's what I think it is.  The Biblical story never really refers to the commanding officer of the Philistines, though surely they had one.  Let's also assume he was a pretty bright, capable guy, so let's slightly re-write the story.  We can confidently assume that the Philistines had scouts, so let's assume that one of those scouts had been "scouting" David and discovered that the teenage shepherd was a great with a sling.  Surely, the scout would have informed the head of the Philistines.  Armed with such intelligence, the Philistine commander would likely have done one of the following:

  • Option A: proceed with a fight between David and Goliath, doing so either out of hubris, or a belief that Goliath might still beat the shepherd;
  • Option B: find the guy in his own army who knew how to use a sling (or send home for a Philistine shepherd)
  • Option C: delay the fight to another day.

The good news is that the USA and its allies have pretty good scouts.  We know something about North Korea's "sling shot" hacking capabilities.  We also suspect that Kim Jong Eun, while being extremely belligerent, is still presumably very rational.  Drawing upon the analogy of David and Goliath, we're at the following point:

  • Goliath (the USA) is telling the Israelites (North Korea), if you want to fight, you'll be crushed;
  • David (North Korea) is getting ready to enter the contest, and the Philistines (USA and Allies) think he's getting ready to fight with sword and armor (nuclear weapons), but it's really with his sling shot (cyber hacking).

Thus, based upon the analogy, the commander of Goliath's army – President Donald Trump and his advisors – must make a decision.  Right now, it sounds like Option A above, with the likely disastrous outcome for everyone.  Moreover, as part of any nuclear war, North Korea would still likely utilize their "sling shot": unleashing cyber terror on the USA.  None of North Korea's missiles might ever hit a USA target, but the cyber losses might be monumental.  Still, a huge loss for the USA, definitely not a victory.

            Drawing upon the analogy, I think Goliath's command – President Trump – should explore Options B and C.  Let's look at what that might look like.  Both Options B and C point towards moving the battle away from the current strength of the USA – nuclear war.  Why would the USA and its allies want to avoid playing to their strength?  It's because the likely outcome of that strategy would be a nuclear disaster.  So what would make either Options B or C better?  Quite simply, avoiding a nuclear conflagration.  Further, delay will permit the Philistines (USA and allies) to find their own David with a sling shot (i.e., get better prepared for cyber warfare).

            So how could Goliath – Donald Trump – most effectively implement either Option B or C?  It would involve the following:

  • Deescalate the rhetoric about missiles, but maintain, maybe even increase, economic pressure;
  • Accept the obvious: North Korea is already a nuclear power and that we're not going to undo that;
  • Don't give in to North Korea's demands that the USA remove its military presence in Korea and surrounding areas;
  • Focus attention on reducing or eliminating North Korea's "sling shot" – the ability to unleash cyber terror.

The obvious objection to this strategy is, the USA wouldn't be eliminating the threat of nuclear weapons in North Korea.  Unfortunately, I don't see any way that could be done short of unleashing a nuclear war, which simply is unacceptable.  Thus, North Korea would likely continue to build more nuclear weapons.  The USA could respond by placing more weapons in and around South Korea.  It would begin to look more and more the way Europe did during the Cold War.  Not ideal, but it's something with which we're already familiar.  It's also equivalent to the Philistine army standing down, or at least not engaging the Israelite army in a war they couldn't win at the time.

So if you're faced with the choice of fighting a war that either you can't win without acceptable losses, the best strategy is to avoid a war until you can get into better position.  That's the same thing as the Philistines not engaging the Israelites – not letting Goliath battle David, at least for the moment.

Now will the status quo remain the status quo forever?  Of course not, something will change.  If the USA's leaders are smart, they'll avoid an unwinnable confrontation today to wait for a potentially winnable one at a future point.  Drawing upon the analogy, it would be similar to the Philistines doing one of the following:

  • Waiting until they found their own "David", who could be a match for the Israelite David;
  • Waiting for the terms of battle to change so they might get into a winnable position.

Would failure to respond to another weapons launch by the North Koreans (i.e., a form of Option C) be perceived as weakness?  Not necessarily, especially if is coupled by more sanctions.  Building upon the analogy, the Philistine army probably had other ways to beat the Israelites than using Goliath, they simply failed to be sufficiently creative or imaginative.

In terms of the USA, "finding its own David" is the same as overcoming any vulnerability to cyber terror, reducing or eliminating North Korea's "sling shot" threat.  Presumably, lots of work is already being done on this.  Most likely, a lot more is required.  Waiting for the terms of battle to change means keeping North Korea in check.  The best way to do that is to maintain economic pressure and maintain military presence.   However, it probably also means de-escalating the rhetoric.  The Biblical Goliath taunted the Israelites to come out to fight.  Today's Goliath – the USA – should be careful about making antagonistic statements – just maintain the pressure in more quiet, subtle ways.  I'm reminded of President Theodore Roosevelt's dictum: walk softly but carry a big stick.  Might be a bit of a challenge for the current President, but I think he can do it – and the world is depending upon him to do it.

The analogy to David and Goliath is not perfect, but I think it is instructive for the current situation.  Let's hope our leaders do everything possible to avoid the mistakes by the leaders of the Biblical Philistines, and avoid creating a modern day version of the story of David and Goliath, with the roles reversed, but with an identical outcome.

     

 

 

 

post a comment

Buy the Book Now

Westbow Press · Amazon · Barnes & Noble

Get Carl's Updates In Your Inbox

Subscribe to our free e-mail updates and receive a free chapter from his latest book, The Unexpected Perspective.

Carl Treleaven is an entrepreneur, author, strong supporter of various non-profits, and committed Christian. He is CEO of Westlake Ventures, Inc., a company with diversified investments in printing and software.

CONNECT WITH CARL

© 2016 - 2017 Unexpected Perspective - All Rights Reserved.